忍者ブログ
  • 2024.11
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 2025.01
[PR]
×

[PR]上記の広告は3ヶ月以上新規記事投稿のないブログに表示されています。新しい記事を書く事で広告が消えます。

【2024/12/24 01:46 】 |
2010年度数学オリンピック予選 問6


数学オリンピックの問題は問題文の意味を理解するだけでも一苦労。
この問題なんかその典型的な例ですね。

問6.★★★
赤色の島,青色の島,黄色の島がそれぞれちょうど3つずつある.これらの島に次の条件をみたすようにいくつかの橋をかける.
●どの2つの島も,1本の橋で結ばれているか結ばれていないかのいずれかであって,橋の両端は相異なる2つの島に繋がっている.
●同色の2つの島を選ぶと,その2つの島は橋で直接結ばれておらず,その2つの島の両方と直接結ばれている島も存在しない.
橋のかけ方は何通りあるか.ただし,1本も橋をかけない場合も1通りと数える.

わかっているともいますが、3つの赤色の島、青色の島、黄色の島はそれぞれ区別します。
ですから、答えは結構大きな値になります。

解答はまた後で書く予定・・・

(問題の著作権は数学オリンピック財団に帰属します)

追記:解答は http://asi.blog-sim.com/Entry/19/

拍手[0回]

PR
【2010/02/02 17:20 】 | 未選択 | 有り難いご意見(0) | トラックバック()
<<2010年度数学オリンピック予選 問7 | ホーム | 2010年度数学オリンピック予選 問5>>
有り難いご意見
貴重なご意見の投稿














虎カムバック
トラックバックURL

<<前ページ | ホーム | 次ページ>>